Este ejemplo es una aplicación Web con Blazor que consume un modelo de clasificación de imágenes utilizando ONNX Runtime y C#
Machine Learning | Predecir el valor de una acción usando series de tiempo
Las series de tiempo (time series) son muy útiles para predecir valores numéricos para uno o varios período de tiempo. En este ejemplo veremos cómo predecir el valor de una acción usando series de tiempo y ML.NET.
Machine Learning | Cómo hacer predicciones en batch usando ML.NET
El framework ML.NET es de gran utilidad para crear aplicaciones con Machine Learning de punta a punta -end to end-, es decir, desde el entrenamiento de un modelo con datos históricos hasta la inferencia o predicción de un resultado con nuevos datos. Cuando creamos una aplicación utilizando ML.NET Model Builder podemos hacer predicciones de un resultado o una predicción a la vez, pero hay ocaciones en que necesitamos hacer muchas predicciones a la vez en forma de batch. En este post haremos un ejercicio para crear una aplicación que predice la cancelación de una reserva de hotel y modificaremos el código para hacer predicciones en batch a partir de varios registros en un archivo .csv.
Machine Learning | Cómo generar nuevos datasets usando bootstrap y ML.NET
Bootstrap es una técnica de remuestreo utilizada para estimar estadísticas de una población mediante el muestreo de un conjunto de datos con reemplazo. En palabras más simples; imaginemos que tenemos una muestra de datos en un dataset y queremos generar una nueva muestra de igual o menor tamaño, entonces tomamos un dato del dataset original de manera aleatoria y la colocamos en un nuevo dataset, a la vez que devolvemos el dato seleccionado al dataset original, y repetimos el proceso hasta generar la nueva muestra deseada. Este enfoque de muestreo se llama muestreo con reemplazo (sampling with replacement)
Machine Learning | Trabajar con múltiples fuentes de datos usando ML.NET
Cuando desarrollamos modelos de machine learning normalmente debemos trabajar unificando datos de diferentes fuentes como archivos .csv, bases de datos o integraciones con APIs. Una de las ventajas de la programación orientada a objetos es que podemos desarrollar funciones para recuperar datos de múltiples fuentes e instanciarlos en un mismo objeto, sin depender de la compatibilidad de los paquetes que utilicemos. En este post veremos cómo instanciar el objeto de origen de datos (dataset) desde múltiples fuentes usando el framework ML.NET.
Machine Learning | 5 ventajas de la programación orientada a objetos para la ingeniería de datos
Para quienes hemos trabajado toda nuestra vida con lenguajes orientados a objetos como Java, C# o Ruby, cuando incursionamos en el mundo de la ciencia de datos nos puede resultar muy complicado el adaptarnos a lenguajes como Python que es muy popular en este campo debido a la facilidad de aprendizaje para quienes no tienen bases de programación, pero para quienes ya tenemos fuertes conocimientos de desarrollo el usar un lenguaje de programación orientado a objetos también puede tener muchas ventajas para usarlo en la ciencia e ingeniería de datos.
Machine Learning | Cómo predecir más de una categoría usando ML.NET
Una de las ventajas de usar el framework ML.NET para la ciencia e ingeniería de datos es la posibilidad de crear experimentos para la creación de modelos de Machine Learning de manera automatizada. En este post vamos a usar la clase MulticlassClassificationExperiment incluida en el paquete Microsoft.ML.AutoML para crear un modelo para predecir la probabilidad de cancelación o cambio en la reserva de un hotel.
Machine Learning | Clasificación de imágenes con ML.NET y Visual Studio for Mac
ML.NET y .Net Core funcionan muy bien en Mac OS y Visual Studio for Mac, pero a veces requiere la corrección de ciertas excepciones. En este post explico cómo ejecutar un proyecto de clasificación de imágenes con ML.NET 1.4 y .Net Core 3.0 en Visual Studio for Mac.
Machine Learning | Segmentación de clientes usando ML.NET
Uno de los casos más comunes con los que se puede ejemplificar una aplicación de Machine Learning es la segmentación de clientes. Algo que todas las empresas desean hacer es identificar grupos de clientes que tengan un perfil similar para poder aplicar acciones sobre ellos, por ejemplo aplicar diferentes campañas de marketing según el perfil de cada grupo. Aquí veremos un ejemplo de cómo realizar una segmentación de clientes usando ML.NET.
ML.NET – Machine Learning VS R
Cuando se puso de moda los frameworks para que los desarrolladores creen modelos y aplicaciones con Machine Learning el lenguaje de programación R se volvió uno de los más populares para programar complicados modelos estadísticos, gráficos y algoritmos de entrenamiento, para analizar datos y construir modelos predictivos de todo tipo.